In this paper, the application of the target pedestrian detection algorithm is studied based on the YOLOv4 network. The simulative results show that the improved YOLOv4 algorithm, which integrates the CBAM attention mechanism and Focal Loss function, shows high detection accuracy in target pedestrian detection. By CBAM, The new feature map will get the attention weight of the channel and space dimension, practical features of the target. Besides, focal loss enhanced the training of difficult-to-classify samples. Based on the improved YOLOv4 algorithm, which will have great potential, the problems of low detection accuracy and seriously missed pedestrian detection in realistic, complex visual scenes are solved.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Detection Algorithm Based on Improved YOLOv4 for Pedestrian


    Contributors:
    Kong, Wen (author) / Qiao, Yidan (author) / Wei, Ziqi (author)


    Publication date :

    2022-10-12


    Size :

    1432056 byte




    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English



    Pedestrian Detection Algorithm Based on Improved YOLOv4

    Zheng, Ziheng / Ni, Chenhui / Zeng, Guolei | IEEE | 2023


    Improved YOLOv4-tiny network for pedestrian detection

    Fan, Pengbo / Chen, Tingzheng / Zhou, Zongtan et al. | IEEE | 2022


    A Improved Yolov4’s vehicle and pedestrian detection method

    Wang, Hailong / Tian, Shihe / Zhang, Zhian et al. | VDE-Verlag | 2022


    Improved YOLOv4 for Pedestrian Detection and Counting in UAV Images

    Hao Kong / Zhi Chen / Wenjing Yue et al. | DOAJ | 2022

    Free access

    UAV Target Detection Algorithm Based on Improved YOLOv4

    Wang, Wenyue / Li, Jian / Zhang, Qi | Springer Verlag | 2022