Near-infrared spectroscopy (NIRS) is a promising solution for classifying mental workload while driving, which is important for creating a support system and preventing traffic accidents. Most of the existing research classified mental workload levels via machine learning or deep learning algorithms, where the sliding window time plays an important role in obtaining the features. This study investigated a novel classification of mental workload level using NIRS data by the difference of sliding window time in both channel-independent and subject-independent scenarios. Five sliding times from 1 to 5 s were tested for classification of the mental workload level in 60 experiments in the naturalistic condition. The results indicated that the sliding times were not significantly related to the accuracy of classification using NIRS data when the sample size was just enough. Furthermore, this study succeeded in indicating the driver mental workload using NIRS information in the naturalistic situation with autocross and car-following conditions with an accuracy of over 80%.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Effect of Sliding Window Time on the Classification of Driver Mental Workload Performance Using Near-Infrared Spectroscopy (NIRS)


    Contributors:


    Publication date :

    2018-11-01


    Size :

    848391 byte





    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English



    Driver Reliability Assessment Based Mental Workload

    Tang, Zhihui / Zhang, Kairan / Cheng, Xueqing | ASCE | 2009


    Driver Reliability Assessment Based Mental Workload

    Tang, Z. / Zhang, K. / Cheng, X. et al. | British Library Conference Proceedings | 2009


    Study of drivers mental workload model

    Miyashita, Y. / Miki, Y. / Itoh, K. et al. | British Library Conference Proceedings | 2009


    A comparison of classification for driver mental workload using ERP and band power parameters

    Lei, Shengguang / Welke, Sebastian / Roetting, Matthias | Tema Archive | 2009


    Measuring Workload Using a Combination of Electroencephalography and Near Infrared Spectroscopy

    Coffey, E.B.J. / Brouwer, A.-M. / van Erp, J.B.F. | British Library Conference Proceedings | 2012