The port and shipping industry urgently needs to accelerate the transition to green and intelligent technologies in the post-pandemic era. Ship collision avoidance remains a pivotal challenge in achieving intelligent navigation. This paper proposes a deep reinforcement learning-based method for ship collision avoidance path planning in dynamic environments. Initially, a two-dimensional grid-based spatial environment is established to model ship domains, with collision risk levels assessed based on Automatic Identification System (AIS) data and the International Regulations for Preventing Collisions at Sea (COLREGs). The ship collision avoidance problem is formulated as a Markov Decision Process (MDP), wherein the observation space, action space, and reward function during collision avoidance are clearly defined. Utilizing this MDP framework, the Dueling Double Deep Q-network (D3QN) algorithm is employed to derive collision avoidance decisions. The algorithm incorporates prioritized experience replay and an adaptive decay greedy exploration strategy to enhance training efficiency. Simulation experiments are conducted across multiple encounter scenarios under collision regulations. The results substantiate the effectiveness of the proposed deep reinforcement learning approach for ship collision avoidance path planning.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Deep Reinforcement Learning Based Path Planning and Collision Avoidance for Smart Ships in Complex Environments


    Contributors:
    Zhou, Li (author) / Gao, Pan (author) / Zhao, Xu (author)


    Publication date :

    2024-09-20


    Size :

    1641408 byte




    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English




    COLREGs-Compliant Collision Avoidance Method for Autonomous Ships via Deep Reinforcement Learning

    Wang, Leihao / Zhang, Xinyu / Wang, Chengbo et al. | TIBKAT | 2022


    COLREGs-Compliant Collision Avoidance Method for Autonomous Ships via Deep Reinforcement Learning

    Wang, Leihao / Zhang, Xinyu / Wang, Chengbo et al. | British Library Conference Proceedings | 2022


    COLREGs-Compliant Collision Avoidance Method for Autonomous Ships via Deep Reinforcement Learning

    Wang, Leihao / Zhang, Xinyu / Wang, Chengbo et al. | Springer Verlag | 2022


    UAV Path Planning Employing MPC-Reinforcement Learning Method Considering Collision Avoidance

    Ramezani, Mahya / Habibi, Hamed / Sanchez-Lopez, Jose Luis et al. | IEEE | 2023