The superstructure is the main load-bearing construction on the bus body, which introduces a concept of spaceframe structure with the assembly of thin columns structures to achieve lightweight constructions. The lightweight superstructures are designed for electric-based vehicles. The concept of crashworthiness is introduced to maintain the safety of the lightweight superstructures. The criteria for crashworthiness are developed by using international safety regulation. The multi-cell platform is proposed for designing a crash box system to improve the crashworthiness and energy absorption performance of electric vehicles. The multi-cell platform can increase the energy absorption of the crash box. There are several multi-cell configurations being studied, such as cruciform shape, H-shaped, T-shaped, and Y-shaped. The multi-cell columns are subjected to quasi-static and low-speed axial loading. The simulation results show that the multi-cell configurations have different effects on energy absorption capability. Increasing the number of cells and intersection can result in higher energy absorption but detrimental due to peak force. It is found that the optimum crash box system is the H configuration cross-section.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Characterization of Multi-Cell Thin-walled Columned Subjected to Axial Loading




    Publication date :

    2019-11-01


    Size :

    1327894 byte




    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English



    Numerical simulation of thin-walled metallic circular frustra subjected to axial loading

    Mamalis,A.G. / Manolakos,D.E. / Ioannidis,M.B. et al. | Automotive engineering | 2005



    Mechanical performance of multi-cell thin-walled tubes under static and dynamic axial loading

    Li, Yaozhou / Fan, Zhiqiang / Hu, Shuangqi et al. | Taylor & Francis Verlag | 2024