Elastic memory composite (EMC) materials exhibit many favorable qualities for deployable structures and have piqued a broad interest within America's deployable space structures industry. EMC materials are similar to traditional fiber-reinforced composites except for the use of a thermoset shape memory resin that enables much higher packaging strains than traditional composites without damage to the fibers or the resin. This unique capability is being exploited in the development of very efficient EMC structural components for deployable spacecraft systems. The present paper is intended primarily to help deployable system designers develop a better understanding of the special capabilities of EMC materials, and the unique considerations that must be applied when engineering structural components with these materials. Specifically, the paper discusses: 1) the impacts of incorporating EMC materials on deployable system design, 2) analyses for packaging strain, deployment time, and deployment energy; and 3) requirements and concepts for heating systems.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    The fundamentals of designing deployable structures with elastic memory composites


    Contributors:
    Lake, M.S. (author) / Campbell, D. (author)


    Publication date :

    2004-01-01


    Size :

    936848 byte





    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English




    The Fundamentals of Designing Deployable Structures with Elastic Memory Composites

    Lake, M. / Beavers, F. / American Institute of Aeronautics and Astronautics | British Library Conference Proceedings | 2002