We propose a novel motion clustering formulation over spatio-temporal depth images obtained from stereo sequences that segments multiple motion models in the scene in an unsupervised manner. The motion models are obtained at frame rates that compete with the speed of the stereo depth computation. This is possible due to a decoupling framework that first delineates spatial clusters and subsequently assigns motion labels to each of these cluster with analysis of a novel motion graph model. A principled computation of the weights of the motion graph that signifies the relative shear and stretch between possible clusters lends itself to a high fidelity segmentation of the motion models in the scene. The fidelity is vindicated through accuracies reaching 89.61% on KITTI and complex native sequences.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Fast Multi Model Motion Segmentation on Road Scenes


    Contributors:


    Publication date :

    2018-06-01


    Size :

    684452 byte




    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English



    FAST MULTI MODEL MOTION SEGMENTATION ON ROAD SCENES

    Sandhu, Mahtab / Haque, Nazrul / Sharma, Avinash et al. | British Library Conference Proceedings | 2018


    MFNet: Multi-Feature Fusion Network for Real-Time Semantic Segmentation in Road Scenes

    Lu, Mengxu / Chen, Zhenxue / Liu, Chengyun et al. | IEEE | 2022


    Segmentation and partition of aerial scenes for road traffic diagnosis

    Kaaniche, K. / Vasseur, P. | Tema Archive | 2004


    Multiband Image Segmentation and Object Recognition for Understanding Road Scenes

    Kang, Y. / Yamaguchi, K. / Naito, T. et al. | IEEE | 2011