This article is concerned with the design of braking control systems for electric vehicles endowed with redundant braking actuators, i.e., with friction brakes and wheel-individual electric motors. Facing the challenge to optimally split the braking torque between these two actuators, a unified model predictive control (MPC) algorithm is presented here. The proposed algorithm unifies the wheel slip controller and the torque blending functions into a single framework. The capability of handling energy performance metrics, actuator constraints and dynamics, represents the main advantages of this approach. Simulation studies demonstrate that, in comparison with state-of-art solutions, the proposed control strategy is able to improve the wheel slip and torque tracking by more than 20%, with minor penalization in the energy recuperation.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Combined wheel-slip control and torque blending using MPC


    Contributors:


    Publication date :

    2014-11-01


    Size :

    2587476 byte




    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English



    Torque blending and wheel slip control in EVs with in-wheel motors

    de Castro, Ricardo / Araújo, Rui E. / Tanelli, Mara et al. | Taylor & Francis Verlag | 2012



    Torque blending and wheel slip control in EVs with in-wheel motors

    Castro, Ricardo de / Araujo, Rui E. / Tanelli, Mara et al. | Tema Archive | 2012


    Torque blending and wheel slip control in electric vehicles with in-wheel motors.

    de Castro,R. / Araujo,R.E. / Tanelli,M. et al. | Automotive engineering | 2012


    Wheel slip control with torque blending using linear and nonlinear model predictive control

    Basrah, M. Sofian / Siampis, Efstathios / Velenis, Efstathios et al. | Taylor & Francis Verlag | 2017