Traffic flow forecasting is crucial to Intelligent Transportation Systems (ITS), particularly for route planning and traffic management. Spatiotemporal graph neural networks have been widely used for this purpose, where a global graph structure is mainly used, but local graph features are ignored. Multi-scale spatiotemporal features—the combined application of global and local graph features—can help effectively discover the underlying spatiotemporal patterns. This study proposed a multi-scale adaptive spatiotemporal forecasting model called Adaptive SpatioTemporal InceptionNet (AST-InceptionNet). To enrich the captured features and extract multi-scale spatiotemporal ones, the inception part is applied to combine local spatiotemporal features with several global ones. Additionally, we developed a fully adaptive graph convolution method, including topologically adaptive graph convolution and an adaptive adjacency matrix. It can autonomously and dynamically learn spatial heterogeneity and enable the proposed model to work with unknown adjacency relations. The proficiency of AST-InceptionNet was validated using four publicly available real-world traffic flow datasets. The experiments demonstrate a satisfactory performance from the proposed model, outperforming existing state-of-the-art methods by up to approximately 12%.
Adaptive Spatiotemporal InceptionNet for Traffic Flow Forecasting
IEEE Transactions on Intelligent Transportation Systems ; 24 , 4 ; 3882-3907
2023-04-01
52980718 byte
Article (Journal)
Electronic Resource
English
Taylor & Francis Verlag | 2024
|Multiadaptive Spatiotemporal Flow Graph Neural Network for Traffic Speed Forecasting
Transportation Research Record | 2022
|Spatiotemporal traffic forecasting: review and proposed directions
Taylor & Francis Verlag | 2018
|