Intelligent transportation systems are often required to estimate their ego state globally while matching their trajectory to the motion of an object of interest (OoI). For example, industrial robots need to synchronize their motion to the trajectory of an OoI to perform visual inspection task in motion. For that, the ego state has to be estimated both globally and relatively to the OoI. In this work, a pose graph method is proposed, which holistically solves the global and relative state estimation. We demonstrate through closed-loop software-in-the-loop simulation that under ideal noise parameter settings, the proposed approach provides comparable performance to that of a Kalman filter, which is proven to be optimal under such conditions. Furthermore, it is shown that the proposed approach is more robust to inaccurate noise parameters than a Kalman filter. Finally, it is shown by experimental validation that the overall procedure performs effectively on a real robot.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Pose Graph Fusion for Robot Follow Control


    Contributors:


    Publication date :

    2021-09-19


    Size :

    1146642 byte




    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English



    Graph-Optimization base multi-sensor fusion for robust UAV pose estimation

    Mascaró Palliser, Rubén | BASE | 2017

    Free access


    ROBOT POSE ESTIMATION

    RAMANATHAN NARAYANAN / MEYER TIMON / RASAM ADITYA SHIWAJI et al. | European Patent Office | 2023

    Free access


    AN EXPERIMENTAL STUDY ON RELATIVE AND ABSOLUTE POSE GRAPH FUSION FOR VEHICLE LOCALIZATION

    Das, Anweshan / Dubbelman, Gijs | British Library Conference Proceedings | 2018