This article investigates the target detection capability of a passive forward scatter radar (PFSR) exploiting a digital video broadcasting – terrestrial (DVB-T) transmitter as illuminator of opportunity. By means of theoretical and simulated analyses, it is shown that conventional processing schemes might suffer from significant performance degradation when exploiting orthogonal frequency division multiplexing (OFDM) waveforms of opportunity compared to other broadcast transmissions (e.g., frequency modulation radio broadcast). Specifically, the direct application of conventional processing approaches to the case of a DVB-T PFSR is demonstrated to yield: 1) a nonnegligible increase of the competing background level and 2) a steeper fading of the target response due to the intrinsic characteristics of the exploited waveforms of opportunity, above all the modulation scheme and the signal spectral characteristics. Therefore, appropriate signal processing techniques are proposed to avoid these effects which jeopardize the target detection capability. The conceived processing scheme exploits the digital nature of the employed waveforms and a subband approach for improving both the interference cancellation stage and the target signature extraction. The benefits of the proposed approach are illustrated by means of theoretical and simulated analyses. The application of the resulting processing scheme against experimental data proves its effectiveness in practical scenarios.
DVB-T-Based Passive Forward Scatter Radar: Inherent Limitations and Enabling Solutions
IEEE Transactions on Aerospace and Electronic Systems ; 57 , 2 ; 1084-1104
2021-04-01
9538165 byte
Article (Journal)
Electronic Resource
English