The Railway Track fractures identification Using AI with IoT project aims to increase railway safety by automating the identification of fractures in railway tracks using artificial intelligence (AI) and Internet of Things (IoT) technology. Even minor cracks in railway tracks, which are crucial components of the transportation system, can cause major accidents if they not immediately identified also repaired. Conventional manual assessing technique are expensive, time-consuming, and error-prone. Convolutional Neural Networks, a kind deep learning model, will used in this study to automatically identify cracks in photos of railroad tracks. The model trained on a dataset of track photographs in order to discern parts are defective (cracked) and non-defective (intact). Once trained, The CNN model is employed to analyze images captured by cameras mounted on trains or inspection vehicles as part of a real-time monitoring system driven by the Internet of Things. Every time a fracture is discovered, the system sends the information to the Blynk IoT platform, notifying and alerting maintenance personnel. Additionally, an LCD display and a buzzer alarm are activated in the field to alert technicians to the detected defect. By combining AI and IoT, the initiative aims to reduce overall maintenance costs, improve safety through early fault detection, and speed up the track inspection process. By providing a more automated, accurate, and efficient method of tracking the present state of railroad lines, the system ultimately increases the harmlessness and reliability of railway transit.
AI Driven railway crack detection system using Convolutional Neural Network and IoT
2025-04-04
985219 byte
Conference paper
Electronic Resource
English
Crack Detection Method of Sleeper Based on Cascade Convolutional Neural Network
DOAJ | 2022
|High-speed Railway Fastener Detection and Localization Method based on convolutional neural network
ArXiv | 2019
|