This paper presents the localization problem of outdoor vehicles using Interacting Multiple Model (IMM) and Extended Kalman Filter (EKF), in their predictive step without exteroceptive sensors data. Usually, hybridization operates between exteroceptive sensors (e.g. GNSS1) and proprioceptive sensors (e.g. Odometer, Inertial Measurement Unit etc.) through a merging algorithm. Common experiments use the GPS receiver PPS time for stamping the odometric, gyrometric and IMU measurements, after what all these sensors are in the same UTC reference time. Now it is well known that the low cost GNSS devices have a very low frequency compared to proprioceptive sensors, combined to a low accuracy. Therefore in order to assess the vehicle positioning at higher frequency for safety applications, the sensors measurements are generally synchronized before being exploited in the merging algorithm. In our approach, the sensors remain in their original frequencies. The objective is to design a reliable and robust system that exploits asynchronous data. In order to reach this goal it is important to guarantee accuracy and integrity of filters even during the predictive steps, when exteroceptive GNSS data are not available: that is proprioceptive-sensors based positioning. We introduce in this paper, a study on the influence of the road bank angle assessment on the output. This parameter is used to correct the gyrometric and inertial unit measurements leading to an improvement of both IMM and EKF predictive output positioning. Tests performed with real data proved the suitability of introducing this parameter in the system.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Improvement of the Proprioceptive-Sensors based EKF and IMM Localization


    Contributors:


    Publication date :

    2008-10-01


    Size :

    296864 byte




    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English



    External force estimation for teleoperation based on proprioceptive sensors

    Sol, Enrique del / King, Ryan / Scott, Robin et al. | BASE | 2014

    Free access

    Multi-sensor localization - Visual Odometry as a low cost proprioceptive sensor

    Bak, Adrien / Gruyer, Dominique / Bouchafa, Samia et al. | IEEE | 2012




    Labyrinthine and proprioceptive aspects of aerospace medicine

    De Lucchi, M. R. / Waite, R. E. | NTRS | 1971