With the ability to acquire and process large-scale traffic big data, a cooperative intelligent transport system can be realized. Identifying important nodes in a traffic network contributes to better traffic control, which plays a more critical role in improving the traffic efficiency of a cooperative intelligent transport system. However, existing traffic node importance evaluation methods rely on manually designed metrics such as betweenness, degree, which may lead to biased results. Meanwhile, the traditional method of iteratively deleting nodes is unsuitable for a large-scale traffic network. In this paper, we propose a novel traffic node importance evaluation method based on clustering in represented transportation network. Specifically, the proposed method first construct a length-weighted network based on the geographic road network. Then, it learns the low-dimensional embeddings of nodes employing network representation learning. Finally, it clusters each nodes with a machine learning method and identifies the critical nodes through vehicle flow of different nodes. Experimental results on the real-word dataset show that our proposed method has excellent performance compared to baseline methods.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Traffic Node Importance Evaluation Based on Clustering in Represented Transportation Networks


    Contributors:
    Huang, Xinlong (author) / Chen, Jian (author) / Cai, Ming (author) / Wang, Wei (author) / Hu, Xiping (author)


    Publication date :

    2022-09-01


    Size :

    1832548 byte




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English





    Node Importance Assessment of Traffic Complex Network Based on C-Means Clustering

    Wang, Li ;Wei, Lu ;Zhang, Yong Zhong | Trans Tech Publications | 2011


    Traffic network traffic node importance identification method

    WANG QIULING / SHI PEIJU | European Patent Office | 2024

    Free access