The rapid solution of surface interpolation and other regularization problems on massively parallel architectures is an important problem within computer vision. Fast relaxation algorithms can be used to integrate sparse data, resolve ambiguities in optic flow fields, and guide stereo matching algorithms. In the present paper, an alternative to multigrid relaxation which is much easier to implement is presented. This approach uses conjugate-gradient descent in conjunction with a hierarchical (multiresolution) set of basis functions. The resulting algorithm uses a pyramid to smooth the residual vector before the new direction is computed. Simulation results show the speed and its dependence on the choice of interpolator, the number of smoothing levels, and other factors. Also discussed is relationship of this approach to other multiresolution relaxation and representation schemes.<>
Fast surface interpolation using hierarchical basis functions
1989-01-01
570846 byte
Conference paper
Electronic Resource
English
Multi-dimensional aircraft surface pressure interpolation using radial basis functions
Online Contents | 2008
|Multi-dimensional aircraft surface pressure interpolation using radial basis functions
SAGE Publications | 2008
|Multidimensional Aircraft Data Interpolation Using Radial Basis Functions
British Library Conference Proceedings | 2007
|