A receiver autonomous integrity monitoring (RAIM) framework for ground vehicle navigation using ambient cellular signals of opportunity (SOPs) and an inertial measurement unit (IMU) is developed. The proposed framework accounts for two types of errors that compromise the integrity of the navigation solution: (i) multipath and (ii) unmodeled biases in the cellular pseudorange measurements due to line-of-sight (LOS) signal blockage and high signal attenuation. This paper, first, characterizes the multipath in a cellular-based navigation framework. Next, a fault detection and exclusion technique for a cellular-based navigation framework is developed. Simulation and experimental results with real long-term evolution (LTE) signals are presented evaluating the efficacy of the proposed RAIM-based fault detection and exclusion technique on a ground vehicle navigating in a deep urban environment in the absence of global navigation satellite system (GNSS) signals. The experimental results on a ground vehicle traversing 825 m in an urban environment show that the proposed RAIM-based measurement exclusion technique reduces the position root mean-squared error (RMSE) by 66%.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Autonomous Integrity Monitoring for Vehicular Navigation With Cellular Signals of Opportunity and an IMU


    Contributors:


    Publication date :

    2022-06-01


    Size :

    5531417 byte




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English