In urban traffic video monitoring systems, traffic congestion is a common scene that causes vehicle occlusion and is a challenge for current vehicle detection methods. To solve the occlusion problem in congested traffic conditions, we have proposed an effective vehicle detection approach based on an and –or graph (AOG) in this paper. Our method includes three steps: constructing an AOG for representing vehicle objects in the congested traffic condition; training parameters in the AOG; and, finally, detecting vehicles using bottom-up inference. In AOG construction, sophisticated vehicle feature selection avoids using the easily occluded vehicle components but takes highly visible components into account. The vehicles are well represented by these selected vehicle features in the presence of a congested condition with serious vehicle occlusion. Furthermore, a hierarchical decomposition of the vehicle representation is proposed during AOG construction to further reduce the impact of vehicle occlusion. After AOG construction, all parameters in the AOG are manually learned from the training images or set and further applied to the bottom-up vehicle inference. There are two innovations of our method, i.e., the usage of the AOG in vehicle detection under congested traffic conditions and the special vehicle feature selection for vehicle representation. To fully test our method, we have done a quantitative experiment under a variety of traffic conditions, a contrast experiment, and several experiments on congested conditions. The experimental results illustrate that our method can effectively deal with various vehicle poses, vehicle shapes, and time-of-day and weather conditions. In particular, our approach performs well in congested traffic conditions with serious vehicle occlusion.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Vehicle Detection Based on the and– or Graph for Congested Traffic Conditions


    Contributors:
    Li, Ye (author) / Li, Bo (author) / Tian, Bin (author) / Yao, Qingming (author)


    Publication date :

    2013-06-01


    Size :

    1148536 byte




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English




    Extracting Vehicle Trajectories Using Unmanned Aerial Vehicles in Congested Traffic Conditions

    Eui-Jin Kim / Ho-Chul Park / Seung-Woo Ham et al. | DOAJ | 2019

    Free access

    Modeling vehicle car-following behavior in congested traffic conditions based on different vehicle combinations

    Kong, Dewen / List, George F. / Guo, Xiucheng et al. | Taylor & Francis Verlag | 2018


    CONTROL OF HYBRID VEHICLE ENGINE START THRESHOLD IN CONGESTED TRAFFIC CONDITIONS

    HAWLEY THOMAS S | European Patent Office | 2021

    Free access