We develop a linearized imaging theory that combines the spatial, temporal, and spectral aspects of scattered waves. We consider the case of fixed sensors and a general distribution of objects, each undergoing linear motion; thus the theory deals with imaging distributions in phase space. We derive a model for the data that is appropriate for narrowband waveforms in the case when the targets are moving slowly relative to the speed of light. From this model, we develop a phase-space imaging formula that can be interpreted in terms of filtered backprojection or matched filtering. For this imaging approach, we derive the corresponding phase-space point-spread function (PSF). We show plots of the phase-space point-spread function for various geometries. We also show that in special cases, the theory reduces to: 1) range-Doppler imaging, 2) inverse synthetic aperture radar (ISAR), 3) synthetic aperture radar (SAR), 4) Doppler SAR, and 5) tomography of moving targets.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Multistatic Radar Imaging of Moving Targets


    Contributors:
    Ling Wang (author) / Cheney, M. (author) / Borden, B. (author)


    Publication date :

    2012-01-01


    Size :

    3975088 byte




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English




    Multistatic and MIMO radar

    British Library Conference Proceedings | 2010


    ISAR imaging using an emulated multistatic radar system

    Palmer, J. / H omer, J. / Longstaff, I.D. et al. | IEEE | 2005


    Multistatic-Radar Binomial Detection

    Mrstik, A.V. | IEEE | 1978