The merging process in an automated highway system (AHS) is divided into a speed adjustment stage and a lane merging stage. Three important parameters, namely acceptability, availability and pursuability, are analyzed to characterize the AHS lane gap features for the ideal, smooth and safe merging of the ramp vehicles. Three control guidance laws, namely linear, optimal and parabolic speed profiles, are developed to describe the desired behaviors of the merging vehicle based on the merging quality and safety. The desired states of the merging vehicle are generated through the outer loop by specified control guidance law. The tracking errors compared with desired states are eliminated by the proper design of controllers in the inner loop. Both longitudinal and lateral controllers are designed using sliding mode control theory that can handle the nonlinear and model uncertainties of the vehicle dynamics. The simulation results show encouraging results.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Vehicle merging control design for an automated highway system


    Contributors:
    Kachroo, P. (author) / Zhijun Li (author)


    Publication date :

    1997-01-01


    Size :

    521091 byte




    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English



    Automated and Cooperative Vehicle Merging at Highway On-Ramps

    Rios-Torres, Jackeline / Malikopoulos, Andreas A. | IEEE | 2017


    Automated and Cooperative Vehicle Merging at Highway On-Ramps

    Rios-Torres, Jackeline | Online Contents | 2016


    Automated and Cooperative Vehicle Merging at Highway On-Ramps

    Rios-Torres, Jackeline | Online Contents | 2017



    Microscopic Simulation Analysis for Automated Highway System Merging Process

    Ran, Bin / Leight, Shawn / Chang, Ben | Transportation Research Record | 1998