Avalanche photodiodes (APDs) are particularly suited to detecting weak optical signals. However, in general, they suffer from a bandwidth limitation imposed by carrier feedback within the avalanche process. Although faster response times can be obtained by reducing the length of the avalanche region, dead space increasingly degrades the improvement relative to predictions from a purely local ionization model using the same velocities for the carriers. Conventionally these velocities are chosen to be the carriers' saturated drift velocities, v/sub s/. However, our recent Monte Carlo (MC) modelling showed that an enhancement in the mean velocities of carriers to ionization in short (<0.3 /spl mu/m) APDs produces a much faster avalanche speed than a model with similar spatial ionization using saturated drift velocities. This velocity enhancement promises to compensate for the dead space degradation although the extent is not clear. For example, if the velocity enhancement overcompensates, APD bandwidth will be greater than expected from a local ionization model using v/sub s/. Since the latter (conventional) model is particularly popular for APD bandwidth a study of its accuracy in a non-equilibrium regime is desirable. The results obtained suggest that APDs with short avalanche regions can be expected to operate more quickly than conventional model predictions, particularly so in very short devices.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Non-equilibrium modelling of avalanche photodiode speed


    Contributors:
    Hambleton, P.J. (author) / Ng, B.K. (author) / Plimmer, S.A. (author) / David, J.P.R. (author) / Rees, G.J. (author)


    Publication date :

    2002-01-01


    Size :

    117908 byte





    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English



    WP4 Non-Equilibrium Modelling of Avalanche Photodiode Speed

    IEEE | British Library Conference Proceedings | 2002


    Avalanche photodiode combines gain with speed

    British Library Online Contents | 1997


    The HgCdTe electron avalanche photodiode

    Beck, J.D. / Wan, C.-F. / Kinch, M.A. et al. | IEEE | 2003


    The HgCdTe Electron Avalanche Photodiode

    IEEE | British Library Conference Proceedings | 2003


    Avalanche photodiode array sensor with high-speed CCD delay line readout [3794-32]

    Albright, K. L. / Bradley, J. M. / SPIE | British Library Conference Proceedings | 1999