Accuracy and precision remains a challenge for capturing system requirements in general, space systems are no exception. Current research efforts continue to fundamentally rely on natural language (shall statements), which is inherently ambiguous, and thus unable to capture the problem space accurately and precisely. We suggest in this paper a model-based approach to requirements that avoids the use of requirements in natural language and leverages formal modeling and system-theoretic constructs instead. Specifically, the proposed approach extends behavioral and structural model elements of the Systems Modeling Language (SysML) with a system-theoretic definition of a solution space. Considering a system model to be a transformation of inputs into outputs, we model the problem space in this paper as a set of required transformations of inputs into outputs. We apply the proposed model-based approach to formulate a subset of requirements of a satellite's Telemetry, Tracking, and Command (TTC) transponder. We use an existing set of requirements for such a system in natural language as a benchmark and evaluate precision, accuracy, and completeness aspects achieved by the proposed model-based formulation.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Model-Based Requirements (TMBR) of a Satellite TTC Transponder


    Contributors:


    Publication date :

    2021-03-06


    Size :

    1135072 byte




    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English





    Satellite vhf transponder time synchronization

    JESPERSEN, J.L. / KAMAS, G. / GATTERER, L.E. | Tema Archive | 1968


    Required Specifications for Satellite-Borne Transponder

    Nakajima, Isao / Juzoji, Hiroshi / Ta, Masuhisa et al. | AIAA | 2002