Linear trajectory models provide mathematical advantages to autonomous driving applications such as motion prediction. However, linear models' expressive power and bias for real-world trajectories have not been thoroughly analyzed. We present an in-depth empirical analysis of the trade-off between model complexity and fit error in modelling object trajectories. We analyze vehicle, cyclist, and pedestrian trajectories. Our methodology estimates observation noise and prior distributions over model parameters from several large-scale datasets. Incorporating these priors can then regularize prediction models. Our results show that linear models do represent real-world trajectories with high fidelity at very moderate model complexity. This suggests the feasibility of using linear trajectory models in future motion prediction systems with inherent mathematical advantages.
An Empirical Bayes Analysis of Object Trajectory Representation Models
2023-09-24
6690174 byte
Conference paper
Electronic Resource
English
Improved Trip Distribution Models Using the Empirical Bayes Method
Transportation Research Record | 2024
|Comparative Analysis of Empirical Bayes and Bayesian Hierarchical Models in Hotspot Identification
Transportation Research Record | 2019
|Comparison of Sichel and Negative Binomial Models in Estimating Empirical Bayes Estimates
Online Contents | 2013
|