Battery management system (BMS) plays an important role in ensuring the safe and stable operation of batteries. In BMS, the State of Health (SOH) status as a measure of the battery storage and release of the ability to change, in essence reflects the aging and damage of batteries. However, in actual operation, the capacity of the battery is difficult to measure directly. This paper presents a method, the voltage, current and temperature data extracted from the charging and discharging process of the battery are directly used as Health Factors(HF), which are divided into training set verification set and test set. The battery capacity estimation model is established based on the Long Short-term Memory Recurrent Neural Network (LSTM, RNN) to estimate SOH.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Capacity Estimation of lithium battery based on charging data and Long Short-term Memory Recurrent Neural Network


    Contributors:
    You, Mingxing (author) / Liu, Yonggang (author) / Chen, Zheng (author) / Zhou, Xuan (author)


    Publication date :

    2022-06-05


    Size :

    527851 byte




    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English




    River Flood Prediction Using a Long Short-Term Memory Recurrent Neural Network

    White, Andrew T. / White, Kristopher D. / Hain, Christopher R. et al. | NTRS | 2020


    Ego-Vehicle Speed Prediction Using a Long Short-Term Memory Based Recurrent Neural Network

    Yeon, Kyuhwan / Min, Kyunghan / Shin, Jaewook et al. | Springer Verlag | 2019


    Ego-Vehicle Speed Prediction Using a Long Short-Term Memory Based Recurrent Neural Network

    Yeon, Kyuhwan / Min, Kyunghan / Shin, Jaewook et al. | Online Contents | 2019


    Real-Time Crash Risk Prediction using Long Short-Term Memory Recurrent Neural Network

    Yuan, Jinghui / Abdel-Aty, Mohamed / Gong, Yaobang et al. | Transportation Research Record | 2019