Vehicular ad hoc networks (VANETs) has become an important part of modern intelligent transportation systems (ITS). However, under the influence of malicious mobile vehicles, offloading vehicle tasks to the cloud server is threatened by security attacks. Edge cloud offloading (ECCO) has considered a promising approach to enable latency-sensitive VANET. How to solve the complex computation offloading of vehicles while ensuring the high security of the cloud server is an issue that needs urgent research. In this paper, we studied the safety and offloading of multi-vehicle ECCO system based on cloud blockchain. First, to achieve consensus in the vehicular environment, we propose a distributed hierarchical software-defined VANET (SDVs) framework to establish a security architecture. Secondly, to improve the security of offloading, we propose to use blockchain-based access control, which protects the cloud from illegal offloading actions. Finally, to solve the intensive computing problem of authorized vehicles, we determine task offloading via jointly optimizing offloading decisions, consensus mechanism decisions, allocation of computation resources and channel bandwidth. The optimization method is designed to minimize long-term system of delays, energy consumption, and flow costs for all vehicles. To better resolve the proposed offloading method, we develop a new deep reinforcement learning (DRL) algorithm via utilizing extended deep Q-networks. We evaluate the performance of our framework on access control and offloading through numerical simulations, which have significant advantages over existing solutions.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Blockchain-Based Secure Computation Offloading in Vehicular Networks


    Contributors:
    Zheng, Xiao (author) / Li, Mingchu (author) / Chen, Yuanfang (author) / Guo, Jun (author) / Alam, Muhammad (author) / Hu, Weitong (author)


    Publication date :

    2021-07-01


    Size :

    1592864 byte




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English




    Cooperative Computation Offloading in Blockchain-Based Vehicular Edge Computing Networks

    Lang, Ping / Tian, Daxin / Duan, Xuting et al. | IEEE | 2022




    Topology-Aware Dynamic Computation Offloading in Vehicular Networks

    Liu, Zhang / Gao, Zhibin / LiWang, Minghui et al. | IEEE | 2021