Night time vehicle detection and tracking has been a challenging task in recent years. This paper presents a novel context-aware traffic surveillance system that integrates sensor information from autonomous vehicles to improve performance of night time vehicle detection and tracking. The key elements of the proposed method include a novel vehicle pairing framework that represents vehicles based on the fused sensor contexts and vehicle taillights. These detected vehicles are then tracked in real-time night time traffic videos. Experiments are conducted on real traffic videos and the proposed system attains 0.6319 in multiple object tracking accuracy (MOTA), which represents a 26.1% increase compared with the baseline performance.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Night Time Vehicle Detection and Tracking by Fusing Sensor Cues from Autonomous Vehicles


    Contributors:


    Publication date :

    2020-05-01


    Size :

    203213 byte





    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English



    Night Time Vehicle Detection and Tracking by Fusing Vehicle Parts From Multiple Cameras

    Zhang, Xinxiang / Story, Brett / Rajan, Dinesh | IEEE | 2022


    Daytime Water Detection by Fusing Multiple Cues for Autonomous Off-Road Navigation

    A. L. Rankin / L. H. Matthies / A. Huertas | NTIS | 2004


    Daytime Water Detection by Fusing Multiple Cues for Autonomous Off-Road Navigation

    A. L. Rankin / L. H. Matthies / A. Huertas | NTIS | 2005


    Daytime Water Detection by Fusing Multiple Cues for Autonomous Off-Road Navigation

    Rankin, A. L. / Matthies, L. H. / Huertas, A. | NTRS | 2004


    FUSING OBSTACLE DATA FOR AUTONOMOUS VEHICLES

    CREABY JUSTIN / RANDS JOSHUA / KENYON RILEY | European Patent Office | 2024

    Free access