Pedestrian crossing is one of the most typical behavior which conflicts with natural driving behavior of vehicles. Consequently, pedestrian crossing prediction is one of the primary task that influences the vehicle planning for safe driving. However, current methods that rely on the practically collected data in real driving scenes cannot depict and cover all kinds of scene condition in real traffic world. To this end, we formulate a deep virtual to real distillation framework by introducing the synthetic data that can be generated conveniently, and borrow the abundant information of pedestrian movement in synthetic videos for the pedestrian crossing prediction in real data with a simple and lightweight implementation. In order to verify this framework, we construct a benchmark with 4667 virtual videos owning about 745k frames (called Virtual-PedCross-4667), and evaluate the proposed method on two challenging datasets collected in real driving situations, i.e., JAAD and PIE datasets. State-of-the-art performance of this framework is demonstrated by exhaustive experiment analysis. The dataset and code can be downloaded from the website 1 1http://www.lotvs.net/code_data/.
Deep Virtual-to-Real Distillation for Pedestrian Crossing Prediction
2022-10-08
2248740 byte
Conference paper
Electronic Resource
English
PEDESTRIAN CROSSING PREDICTION METHOD AND PEDESTRIAN CROSSING PREDICTION DEVICE
European Patent Office | 2023
|European Patent Office | 2022
|Crossing pedestrian trajectory prediction method and device
European Patent Office | 2022
|