Although deep reinforcement learning (deep RL) methods have lots of strengths that are favorable if applied to autonomous driving, real deep RL applications in autonomous driving have been slowed down by the modeling gap between the source (training) domain and the target (deployment) domain. Unlike current policy transfer approaches, which generally limit to the usage of uninterpretable neural network representations as the transferred features, we propose to transfer concrete kinematic quantities in autonomous driving. The proposed robust-control-based (RC) generic transfer architecture, which we call RL-RC, incorporates a transferable hierarchical RL trajectory planner and a robust tracking controller based on disturbance observer (DOB). The deep RL policies trained with known nominal dynamics model are transfered directly to the target domain, DOB-based robust tracking control is applied to tackle the modeling gap including the vehicle dynamics errors and the external disturbances such as side forces. We provide simulations validating the capability of the proposed method to achieve zero-shot transfer across multiple driving scenarios such as lane keeping, lane changing and obstacle avoidance.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Zero-shot Deep Reinforcement Learning Driving Policy Transfer for Autonomous Vehicles based on Robust Control


    Contributors:
    Xu, Zhuo (author) / Tang, Chen (author) / Tomizuka, Masayoshi (author)


    Publication date :

    2018-11-01


    Size :

    1139931 byte





    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English



    Deep reinforcement‐learning‐based driving policy for autonomous road vehicles

    Makantasis, Konstantinos / Kontorinaki, Maria / Nikolos, Ioannis | Wiley | 2020

    Free access

    Deep reinforcement-learning-based driving policy for autonomous road vehicles

    Makantasis, Konstantinos / Kontorinaki, Maria / Nikolos, Ioannis | IET | 2019

    Free access

    Autonomous Driving with Deep Reinforcement Learning

    Zhu, Yuhua / Technische Universität Dresden | SLUB | 2023


    DQN-Based Deep Reinforcement Learning for Autonomous Driving

    Pérez-Gil, Óscar / Barea, Rafael / López-Guillén, Elena et al. | Springer Verlag | 2020


    Urban Autonomous Driving of Emergency Vehicles with Reinforcement Learning

    Tong, Zherui / Ayala, Angel / Sandoval, Eduardo Benitez et al. | IEEE | 2023