We present a novel algorithm aiming to estimate the 3D shape, the texture of a human face, along with the 3D pose and the light direction from a single photograph by recovering the parameters of a 3D morphable model. Generally, the algorithms tackling the problem of 3D shape estimation from image data use only the pixels intensity as input to drive the estimation process. This was previously achieved using either a simple model, such as the Lambertian reflectance model, leading to a linear fitting algorithm. Alternatively, this problem was addressed using a more precise model and minimizing a non-convex cost function with many local minima. One way to reduce the local minima problem is to use a stochastic optimization algorithm. However, the convergence properties (such as the radius of convergence) of such algorithms, are limited. Here, as well as the pixel intensity, we use various image features such as the edges or the location of the specular highlights. The 3D shape, texture and imaging parameters are then estimated by maximizing the posterior of the parameters given these image features. The overall cost function obtained is smoother and, hence, a stochastic optimization algorithm is not needed to avoid the local minima problem. This leads to the multi-features fitting algorithm that has a wider radius of convergence and a higher level of precision. This is shown on some example photographs, and on a recognition experiment performed on the CMU-PIE image database.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Estimating 3D shape and texture using pixel intensity, edges, specular highlights, texture constraints and a prior


    Contributors:
    Romdhani, S. (author) / Vetter, T. (author)


    Publication date :

    2005-01-01


    Size :

    413123 byte





    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English



    Patch-Based Texture Edges and Segmentation

    Wolf, L. / Huang, X. / Martin, I. et al. | British Library Conference Proceedings | 2006



    Retrieving multiple light sources in the presence of specular reflections and texture

    Lagger, P. / Fua, P. | British Library Online Contents | 2008


    Correspondence Search in the Presence of Specular Highlights Using Specular-Free Two-Band Images

    Yoon, K.-J. / Kweon, I.-S. | British Library Conference Proceedings | 2006