We describe how to teach deformable models to maximize image segmentation correctness based on user-specified criteria, and we present a method for evaluating which criteria work best. We present sectored snakes, a formulation that demonstrably improves upon regular snakes. A traditional deformable model ("snake" in 2D) fails to find an object's boundary when the strongest nearby image edges are not the ones sought. But models can be trained to respond to other image features instead, by learning their probability distributions. The implementor must then decide on which of many image qualities to teach the model. To this end, we show how to evaluate the efficacy of any resulting deformable model, given a sampling of ground truth, a model of the range of shapes tried during optimization, and a measure of shape closeness. In the domain of abdominal CT images, we demonstrate such evaluation on a simple "sectoring" of a snake, in which intensity and perpendicular gradient are observed over equal-length segments. This specific set of qualities shows a measured improvement over an objective function that is uniform around the shape, and it follows naturally from examination of the latter's failures due to images variations around the organ boundary.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Sectored snakes: evaluating learned-energy segmentations


    Contributors:


    Publication date :

    1998-01-01


    Size :

    884001 byte




    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English



    Sectored Snakes: Evaluating Learned-Energy Segmentations

    Fenster, S. D. / Kender, J. R. / IEEE; Computer Society | British Library Conference Proceedings | 1998


    General Theory of Fuzzy Connectedness Segmentations

    Ciesielski, K. C. | British Library Online Contents | 2016


    Learning Layered Motion Segmentations of Video

    Pawan Kumar, M. / Torr, P. H. / Zisserman, A. | British Library Online Contents | 2008


    Learning layered motion segmentations of video

    Kumar, M.P. / Torr, P.H.S. / Zisserman, A. | IEEE | 2005