As a distributed machine learning paradigm, federated learning (FL) has been regarded as a promising candidate to preserve user privacy in Internet of Things (IoT) networks. Leveraging the waveform superposition property of wireless channels, over-the-air FL (AirFL) achieves fast model aggregation by integrating communication and computation via concurrent analog transmissions. To support sustainable AirFL among energy-constrained IoT devices, we consider that the base station (BS) adopts simultaneous wireless information and power transfer (SWIPT) to distribute global model and charge local devices in each communication round. To maximize the long-term energy efficiency (EE) of AirFL, we investigate a resource allocation problem by jointly optimizing the time division, transceiver beamforming, and power splitting in SWIPT-enabled IoT networks. Considering such multiple closely-coupled continuous valuables, we propose a deep reinforcement learning (DRL) algorithm based on twin delayed deep deterministic (TD3) policy to smartly make downlink and uplink communication strategies with the coordination between the BS and devices. Simulation results show that the proposed TD3 algorithm obtains about 41% EE improvement compared to traditional optimization method and other DRL algorithms.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Deep Reinforcement Learning for Over-the-Air Federated Learning in SWIPT-Enabled IoT Networks


    Contributors:
    Zhang, Xinran (author) / Tian, Hui (author) / Ni, Wanli (author) / Sun, Mengying (author)


    Publication date :

    2022-09-01


    Size :

    509886 byte





    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English



    A Linear MMSE Receiver for SWIPT-enabled Wireless Networks

    Guo, Yuan / Skouroumounis, Christodoulos / Krikidis, Ioannis | IEEE | 2022




    Enhancing WiFi Multiple Access Performance with Federated Deep Reinforcement Learning

    Zhang, Lyutianyang / Yin, Hao / Zhou, Zhanke et al. | IEEE | 2020