Gliding robotic fish, a hybrid of underwater gliders and robotic fish, are energy-efficient and highly maneuverable, and hold strong promise for long-duration sampling of underwater environments. In this paper a novel systematic autonomous water-column-based sampling scheme for gliding robotic fish is proposed to measure the three-dimensional spatial distributions of variables of interest in aquatic environments. The scheme exploits energy-efficient spiral-down motion to sample each water column, followed by sagittal-plane glide-up towards the direction of next water column. Once surfacing, the robot uses GPS guidance to reach the next column location through swimming. To enhance the path tracking performance, a two-degree-of-freedom controller involving H∞ control is used in the spiral motion, and a sliding-mode controller is employed to regulate the yaw angle during glide-up. The sampling scheme has been implemented on a gliding robotic fish prototype, “Grace”, and verified first in pool experiments, and then in field experiments involving the sampling of harmful algae concentration in the Wintergreen Lake, Michigan.
Autonomous sampling of water columns using gliding robotic fish: Control algorithms and field experiments
2015-05-01
1010928 byte
Conference paper
Electronic Resource
English
Gliding depth control method, system and device for biomimetic gliding robotic dolphin
European Patent Office | 2021
|