This paper focuses on real-time estimation of State of Charge (SOC) in Lithium-Ion battery. Because of the highly complex electrochemical reaction inside the battery the conventional first order battery model is not accurate and cannot respond to the battery’s conditions correctly because of the simplicity of the model. So, the neural network (NN) is selected to estimate the SOC dynamically due to its strong nonlinear fitting ability. The NN strategy also was used to implement the parameter identification for the battery model.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    State-of-Charge Estimation of the Lithium-Ion Battery Using Neural Network Based on an Improved Thevenin Circuit Model


    Contributors:


    Publication date :

    2018-06-01


    Size :

    2821295 byte




    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English



    Current estimation using Thevenin battery model

    Putra, Wahyu Sukestyastama / Dewangga, Bobby Rian / Cahyadi, Adha et al. | IEEE | 2015


    EV battery state of charge: neural network based estimation

    Affanni, A. / Bellini, A. / Concari, C. et al. | Tema Archive | 2003


    A Novel State of Charge Estimation Method of Lithium-ion Battery Based on NARX Neural Network Model

    Wang, Qiao / Ye, Min / Wei, Meng et al. | British Library Conference Proceedings | 2021


    Neural Network based State of Charge Prediction of Lithium-ion Battery

    Sharma, Sakshi / Achlerkar, Pankaj Dilip / Shrivastava, Prashant et al. | IEEE | 2022


    Battery state of charge estimation using an Artificial Neural Network

    Ismail, Mahmoud / Dlyma, Rioch / Elrakaybi, Ahmed et al. | IEEE | 2017