Studies on public transportation in Europe suggest that European inhabitants use buses in ca. 56% of all public transport travels. One of the critical factors affecting such a percentage and more, in general, the demand for public transport services, with an increasing reluctance to use them, is their quality. End-users can perceive quality from various perspectives, including the availability of information, i.e., the access to details about the transit and the provided services. The approach proposed in this paper, using innovative methodologies resorting on data mining and machine learning techniques, aims to make available the unavailable data about public transport. In particular, by mining GPS traces, we manage to reconstruct the complete transit graph of public transport. The approach has been successfully validated on a real dataset collected from the local bus system of the city of L’Aquila (Italy). The experimental results demonstrate that the proposed approach and implemented framework are both effective and efficient, thus being ready for deployment.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Unavailable Transit Feed Specification: Making It Available With Recurrent Neural Networks


    Contributors:


    Publication date :

    2021-04-01


    Size :

    2924934 byte




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English






    Decision Making When the Acceptable Options Become Unavailable

    Potter, Richard E. | Online Contents | 1994


    Applying the General Transit Feed Specification to the Global South

    Eros, Emily / Mehndiratta, Shomik / Zegras, Chris et al. | Transportation Research Record | 2014