The work presented here investigates proposed impact angle control guidance laws with terminal acceleration constraints for a stationary or slowly moving target. These laws, called time-to-go polynomial guidance (TPG), assume the guidance command as a polynomial function of time-to-go and determine the coefficients of the guidance command to satisfy the specified terminal constraints. The closed-form trajectory solutions of the guidance command and the target look angle for lag-free systems are derived and their characteristics are investigated. Based on the results we propose a systematic method to find the guidance gains that satisfy practical limits, such as the actuator's command limit and the seeker's field-of-view (FOV) limit. A time-to-go estimation method is also discussed for implementing TPG. Nonlinear and adjoint simulations are performed to investigate the performance of TPG.
Polynomial Guidance Laws Considering Terminal Impact Angle and Acceleration Constraints
IEEE Transactions on Aerospace and Electronic Systems ; 49 , 1 ; 74-92
2013-01-01
6338466 byte
Article (Journal)
Electronic Resource
English