The increasing reliance on unmanned aerial vehicles (UAVs) has escalated the associated cyber risks. While machine learning has enabled intrusion detection systems (IDSs), current IDSs do not incorporate cyber-physical UAV features, which limits their detection performance. Additionally, the lack of public UAV’s cyber and physical datasets to develop IDS hinders further research. Therefore, this paper proposes a novel IDS fusing UAV cyber and physical features to improve detection capabilities. First, we developed a testbed that includes UAV, controller, and data collection tools to execute cyber-attacks and gather cyber and physical data under normal and attack conditions. We made this dataset publicly available. The dataset covers a range of cyber-attacks including denial-of-service, replay, evil twin, and false data injection attacks. Then, machine learning-based IDSs fusing cyber and physical features were trained to detect cyber-attacks using support vector machines, feedforward neural networks, recurrent neural networks with long short-term memory cells, and convolutional neural networks. Extensive experiments were conducted on varying complexity and range of attack training data to explore whether (a) fusion of cyber and physical features enhances detection performance compared to cyber or physical features alone, (b) fusion enhances detection when IDS is trained on a single attack type and tested on unseen attacks of varying complexity, (c) fusion enhances performance when the range of attack training data increases and models are tested on unseen attacks. Answering these research questions provides insights into IDS capabilities using cyber, physical, and cyber-physical features under different conditions.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Cyber-Physical Intrusion Detection System for Unmanned Aerial Vehicles


    Contributors:


    Publication date :

    2024-06-01


    Size :

    7630647 byte




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English



    Unmanned Aerial Vehicles: Vulnerability to Cyber Attacks

    Dahiya, Susheela / Garg, Manik | TIBKAT | 2020


    Unmanned Aerial Vehicles: Vulnerability to Cyber Attacks

    Dahiya, Susheela / Garg, Manik | Springer Verlag | 2020


    Intrusion Detection Systems for Networked Unmanned Aerial Vehicles: A Survey

    Choudhary, Gaurav / Sharma, Vishal / You, Ilsun et al. | ArXiv | 2018

    Free access

    Cyber-attack detection, localization, and neutralization for unmanned aerial vehicles

    MESTHA LALIT KESHAV / ANUBI OLUGBENGA / JOHN JUSTIN VARKEY | European Patent Office | 2021

    Free access

    CYBER-ATTACK DETECTION, LOCALIZATION, AND NEUTRALIZATION FOR UNMANNED AERIAL VEHICLES

    MESTHA LALIT KESHAV / ANUBI OLUGBENGA / JOHN JUSTIN VARKEY | European Patent Office | 2021

    Free access