This paper focuses on metaheuristic algorithms for the real-time traffic management problem of scheduling and routing trains in a complex and busy railway network. Since the problem is strongly NP-hard, heuristic algorithms are developed to compute good quality solutions in a short computation time. In this work, a number of algorithmic improvements are implemented in the AGLIBRARY optimization solver, that manages trains at the microscopic level of block sections and block signals and at a precision of seconds. The solver outcome is a detailed conflict-free train schedule, being able to avoid deadlocks and to minimize train delays. The proposed algorithmic framework starts from a good initial solution for the train scheduling problem with fixed routes, obtained via a truncated branch-and-bound algorithm. Variable neighbourhood search and tabu search metaheuristics are then applied to improve the solution by re-routing some trains. Computational experiments are performed on a UK railway network with dense traffic in order to compare the two types of studied metaheuristics.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Metaheuristics for Real-Time Near-Optimal Train Scheduling and Routing


    Contributors:


    Publication date :

    2015-09-01


    Size :

    180244 byte





    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English




    Vehicle Routing Problem with Time Windows, Part II: Metaheuristics

    Braysy, O. / Gendreau, M. | British Library Online Contents | 2005


    REAL-TIME TRAIN SCHEDULING METHOD FOR RESOLVING TRAIN CONFLICT

    KWON SEONG HO / LEE BYUNG HUN / OH SEH CHAN et al. | European Patent Office | 2025

    Free access


    Train Routing Model and Algorithm Combined with Train Scheduling

    Li, F. / Gao, Z. / Li, K. et al. | British Library Online Contents | 2013