In the paper, we study the problem of optimal matching of two generalized functions (distributions) via a diffeomorphic transformation of the ambient space. In the particular case of discrete distributions (weighted sums of Dirac measures), we provide a new algorithm to compare two arbitrary unlabelled sets of points, and show that it behaves properly in limit of continuous distributions on sub-manifolds. As a consequence, the algorithm may apply to various matching problems, such as curve or surface matching (via a sub-sampling), or mixings of landmark and curve data. As the solution forbids high energy solutions, it is also robust towards addition of noise and the technique can be used for nonlinear projection of datasets. We present 2D and 3D experiments.
Diffeomorphic matching of distributions: a new approach for unlabelled point-sets and sub-manifolds matching
2004-01-01
1101066 byte
Conference paper
Electronic Resource
English
British Library Conference Proceedings | 2004
|Image statistics based on diffeomorphic matching
IEEE | 2005
|Image Statistics Based on Diffeomorphic Matching
British Library Conference Proceedings | 2005
|Matching manifolds to gas system needs
Tema Archive | 1975
Affine Matching of Planar Sets
British Library Online Contents | 1998
|