This systematic literature review provides a structured and detailed overview of research on anomaly detection for connected and autonomous vehicles, focusing on the Artificial Intelligence methods employed, training approaches, and testing and evaluation techniques. The initial database search identified 2,160 articles, of which 203 were included in this review after rigorous screening and assessment. This study revealed that the most commonly used anomaly detection techniques employed are deep learning networks such as LSTM, CNN, and autoencoders, alongside one-class SVM. Most detection models were trained using real-world operational vehicle data, although anomalies, such as attacks and faults, were often injected artificially into the datasets. The models were evaluated primarily using five key evaluation metrics: recall, accuracy, precision, F1-score, and false positive rate. The most frequently used set of evaluation metrics for detection models were accuracy, precision, recall, and F1-score. The review makes several recommendations to improve future work related to anomaly detection models. It recommends providing comprehensive assessment of the anomaly detection models and emphasise the importance to share models publicly to facilitate collaboration within the research community and enable further validation. Recommendations also include the need for benchmarking datasets with predefined anomalies or cyberattacks (with comprehensive threat modelling) to test and improve the effectiveness of the proposed anomaly detection models. Future research should focus on the deployment of anomaly based detection in vehicles to evaluate their performance in real-world driving conditions, and explore systems using communication protocols beyond CAN, such as Ethernet and FlexRay.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Systematic Literature Review: Anomaly Detection in Connected and Autonomous Vehicles


    Contributors:


    Publication date :

    2025-01-01


    Size :

    3144983 byte




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English



    Deep Learning-Based Anomaly Detection for Connected Autonomous Vehicles Using Spatiotemporal Information

    Mansourian, Pegah / Zhang, Ning / Jaekel, Arunita et al. | IEEE | 2023


    UNSUPERVISED ANOMALY DETECTION FOR AUTONOMOUS VEHICLES

    SINDHWANI VIKAS / SIDAHMED HAKIM / CHOROMANSKI KRZYSZTOF et al. | European Patent Office | 2021

    Free access

    Unsupervised anomaly detection for autonomous vehicles

    CHANDWANI VIJAY / SIDDAMEID HERBERT / KOROMANSKI KRZYSZTOF et al. | European Patent Office | 2022

    Free access

    UNSUPERVISED ANOMALY DETECTION FOR AUTONOMOUS VEHICLES

    SINDHWANI VIKAS / SIDAHMED HAKIM / CHOROMANSKI KRZYSZTOF et al. | European Patent Office | 2021

    Free access

    UNSUPERVISED ANOMALY DETECTION FOR AUTONOMOUS VEHICLES

    SINDHWANI VIKAS / SIDAHMED HAKIM / CHOROMANSKI KRZYSZTOF et al. | European Patent Office | 2023

    Free access