In Release 14, 3GPP completed a first version of cellular vehicle-to-everything (C-V2X) communications wherein two modalities were introduced. One of these schemes, known as \textit{mode-3}, requires support from eNodeBs in order to realize subchannel scheduling. This paper discusses a graph theoretical approach for semi- persistent scheduling (SPS) in \textit{mode-3} harnessing a sensing mechanism whereby vehicles can monitor signal-to-interference-plus-noise ratio (SINR) levels across sidelink subchannels. eNodeBs request such measurements from vehicles and utilize them to accomplish suitable subchannel assignments. However, since SINR values--herein also referred to as side information--span a wide range, quantization is required. We conclude that 3 bits per vehicle every 100 ms can provide sufficient granularity to maintain appropriate performance without severe degradation. Furthermore, the proposed algorithm is compared against pseudo-random and greedy SPS algorithms.
Impact of Quantized Side Information on Subchannel Scheduling for Cellular V2X
2018-06-01
387905 byte
Conference paper
Electronic Resource
English