An array of n sensors at known locations receives the signal from an emitter whose location is desired. By measuring the time differences of arrival (TDOAs) between pairs of sensors, the range differences (RDs) are available and it becomes possible to compute the emitter location. Traditionally geometric solutions have been based on intersections of hyperbolic lines of position (LOPs). Each measured TDOA provides one hyperbolic LOP. In the absence of measurement noise, the RDs taken around any closed circuit of sensors add to zero. A bivector is introduced from exterior algebra such that when noise is present, the measured bivector of RDs is generally infeasible in that there does not correspond any actual emitter position exhibiting them. A circuital sum trivector is also introduced to represent the infeasibility; a null trivector implies a feasible RD bivector. A 2-step RD Emitter Location algorithm is proposed which exploits this implicit structure. Given the observed noisy RD bivector /spl Delta/, (1) calculate the nearest feasible RD bivector /spl Delta//spl circ/, and (2) calculate the nearest point to the (/sub 3//sup n/) planes of position, one for each of the triads of elements of /spl Delta//spl circ/. Both algorithmic steps are least squares (LS) and finite. Numerical comparisons in simulation show a substantial improvement in location error variances.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Least squares range difference location


    Contributors:
    Schmidt, R. (author)


    Publication date :

    1996-01-01


    Size :

    151751 byte




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English



    Least Squares Range Difference Location

    Schmidt, R. | Online Contents | 1996


    Bearings Only Location Using Nonlinear Least Squares

    Mo, L. / Zhou, Y. / Xu, Y. et al. | British Library Conference Proceedings | 1997


    Bearings-only location using nonlinear least squares

    Mo Longbin / Xu Yaowei / Zhou Yiyu et al. | IEEE | 1997