This paper develops and validates a modeling framework for the evaluation of alternative truck lane management strategies. The framework is used to evaluate alternative truck lane management strategies along a section of Interstate 81, VA. The average light-duty and heavy-duty vehicle speeds produced by the simulation model were found to be consistent with field observations for the base condition. Three scenarios were considered, including: (a) adding a single lane to section 2 (from mileposts 125.0 to 120.7); (b) adding a single lane across sections 1 (from mileposts 128.1 to 125.0), 2, and 3 (from milepost 120.7 to 119.6); (c) combining (a) and (b) to result in four lanes from mileposts 128.1 to 119.6. The results of the analysis indicate that all three scenarios produce savings in travel time; energy; HC, CO, and CO2 emissions; and crash savings relative to the base do-nothing scenario. These benefits increase as the travel demand grows from the base year of 2004 to the horizon year of 2035. A benefit-cost analysis was conducted, and the results demonstrate that the most cost-effective upgrade is to add a third lane to section 2 (benefit-cost ratio of 5.35) followed by the addition of a single lane to sections 1 through 3 (benefit-cost ratio of 2.30). The addition of a fourth lane to section 2, together with an extra lane in sections 1 through 3, still offers advantages with a benefit-cost ratio of 1.60.
Modeling framework for the evaluation of alternative truck lane management strategies
2010-09-01
518621 byte
Conference paper
Electronic Resource
English
Safety Evaluation of Truck Lane Restriction Strategies Using Microsimulation Modeling
Transportation Research Record | 2009
|Safety Evaluation of Truck Lane Restriction Strategies Using Microsimulation Modeling
Online Contents | 2009
|Evaluating Alternative Truck Management Strategies Along I-81
British Library Conference Proceedings | 2005
|Evaluating Alternative Truck Management Strategies Along Interstate 81
Transportation Research Record | 2005
|