This paper deals with the problem of flight path planning for unmanned fixed-wing air vehicles (UAVs) in complex 3D environments. Flight paths must be compliant with both mission constraints defined in terms of no-fly zones, obstacles and destination points and aircraft performance constraints such as maximum flight path angle and minimum turn radius.Trajectory generation is addressed as a minimum cost path search using a novel layered Essential Visibility Graph whose arcs and corresponding weights are obtained via an efficient branching algorithm to reduce computational time. The resulting path is a piecewise trajectory composed by only circular arcs and straight segments, according to Dubins paradigm. To prove the effectiveness of the proposed method, operational scenarios derived from real terrain morphology have been used.
Smooth Path planning for Fixed-Wing Aircraft in 3D Environment Using a Layered Essential Visibility Graph
2019-06-01
969447 byte
Conference paper
Electronic Resource
English