It is indispensable for professional traffic signal engineers to perform manual operations of traffic signal control (TSC) to mitigate traffic congestion, especially with complicated scenarios. However, such a task is time-consuming, and the level of congestion mitigation heavily relies on individual expertise in engineering practice. Therefore, it is cost-effective to learn traffic engineers’ knowledge to enhance the problem-solving skills for a large-scale urban traffic network. In this paper, a data augmented deep behavioral cloning (DADBC) method is proposed to imitate the problem-solving skills of traffic engineers. The method is under a conceptual framework, parallel learning (PL) framework, that incorporates machine learning techniques for solving decision-making problems in complex systems. The DADBC method enhances a hybrid demonstration by exploiting a generative adversarial network (GAN) and then uses the deep behavioral cloning (DBC) model to learn traffic engineers’ control schemes. According to the validation results using the real manipulation data from Hangzhou, China, our method can imitate complex human behaviors in intervening traffic signal control operations to improve traffic efficiency in urban areas.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Data Augmented Deep Behavioral Cloning for Urban Traffic Control Operations Under a Parallel Learning Framework


    Contributors:
    Li, Xiaoshuang (author) / Ye, Peijun (author) / Jin, Junchen (author) / Zhu, Fenghua (author) / Wang, Fei-Yue (author)


    Publication date :

    2022-06-01


    Size :

    2369402 byte




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English



    Driver behavioral cloning using deep learning

    Kocic, Jelena / Jovicic, Nenad / Drndarevic, Vujo | IEEE | 2018


    Augmented Reality Applications to Traffic Operations

    Moussa, G. S. / Radwan, E. / Hussain, K. F. et al. | British Library Conference Proceedings | 2005


    Augmented Reality Applications to Traffic Operations

    Moussa, Ghada S. / Radwan, Essam / Hussain, Khaled F. | ASCE | 2006