Accurate demand prediction plays a significant role in online car-hailing platforms. With ensemble learning, several models can be combined into a single demand predictive model, achieving low prediction error. Nevertheless, the existing ensemble methods are not intended for spatio-temporal data and thus cannot deal with it. In this article, a spatio-temporal data ensemble model is proposed to predict car-hailing demands. Treating the prediction results as various channels of an image, the proposed ensemble module first compresses and then restores the results using the fully convolutional network. Additionally, a skip connection is used to preserve both the fine-grained information in the shallow layers and the deep coarse information. Based on the principle of model as a service, any model can be plugged into our framework as base models to improve the prediction accuracy. Experimental results demonstrate the effectiveness of the presented model.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Spatio-Temporal Ensemble Method for Car-Hailing Demand Prediction


    Contributors:
    Liu, Yang (author) / Lyu, Cheng (author) / Khadka, Anish (author) / Zhang, Wenbo (author) / Liu, Zhiyuan (author)


    Publication date :

    2020-12-01


    Size :

    1014978 byte




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English