Anomaly detection is an important field for the anticipation of aircraft maintenance operations, working as an enabler of diagnostic and prognostic functions. A method has been implemented to detect abnormal data in Aircraft Condition Monitoring System (ACMS) records. Rather than using already known and usual detection triggers which are partial detectors and insensitive to new flight and system conditions, this method automatically extracts abnormal data points without requiring any a priori information about the system and its conditions. To accomplish this objective, we propose to combine a segmentation based and density clustering approaches for detecting and filtering anomalies. This method was applied on A340 ACMS data recordings. The detection logics associated with the new anomalies can be used as new detection conditions to be potentially implemented onboard, further extending legacy detection capabilities.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Unsupervised anomaly detection for Aircraft Condition Monitoring System




    Publication date :

    2015-03-01


    Size :

    767934 byte




    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English



    Unsupervised Anomaly Detection for Liquid-Fueled Rocket Propulsion Health Monitoring

    Schwabacher, Mark / Oza, Nikunj / Matthews, Bryan | AIAA | 2007


    Unsupervised Anomaly Detection for Liquid-Fueled Rocket Propulsion Health Monitoring

    Schwabacher, Mark / Oza, Nikunj / Matthews, Bryan | AIAA | 2009


    Unsupervised Scalable Multimodal Driving Anomaly Detection

    Qiu, Yuning / Misu, Teruhisa / Busso, Carlos | IEEE | 2023

    Free access

    UNSUPERVISED ANOMALY DETECTION FOR AUTONOMOUS VEHICLES

    SINDHWANI VIKAS / SIDAHMED HAKIM / CHOROMANSKI KRZYSZTOF et al. | European Patent Office | 2021

    Free access

    AIRCRAFT CONDITION MONITORING SYSTEM

    HAUKOM MICHAEL JAMES | European Patent Office | 2023

    Free access