This paper explores the optimization of Ground Delay Programs (GDP), a prevalent Traffic Management Initiative used in Air Traffic Management (ATM) to reconcile capacity and demand discrepancies at airports. Employing Reinforcement Learning (RL) to manage the inherent uncertainties in the national airspace system-such as weather variability, fluctuating flight demands, and airport arrival rates-we developed two RL models: Behavioral Cloning (BC) and Conservative Q-Learning (CQL). These models are designed to enhance GDP efficiency by utilizing a sophisticated reward function that integrates ground and airborne delays and terminal area congestion. We constructed a simulated single-airport environment, SAGDP_ENV, which incorporates real operational data along with predicted uncertainties to facilitate realistic decision-making scenarios. Utilizing the whole year 2019 data from Newark Liberty International Airport (EWR), our models aimed to preemptively set airport program rates. Despite thorough modeling and simulation, initial outcomes indicated that the models struggled to learn effectively, attributed potentially to oversimplified environmental assumptions. This paper discusses the challenges encountered, evaluates the models' performance against actual operational data, and outlines future directions to refine RL applications in ATM.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Deep Reinforcement Learning for Real-Time Ground Delay Program Revision and Corresponding Flight Delay Assignments


    Contributors:
    Liu, Ke (author) / Hu, Fan (author) / Lin, Hui (author) / Cheng, Xi (author) / Chen, Jianan (author) / Song, Jilin (author) / Feng, Siyuan (author) / Su, Gaofeng (author) / Zhu, Chen (author)


    Publication date :

    2024-09-24


    Size :

    1745389 byte





    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English




    REAL-TIME AIRCRAFT FLIGHT DELAY PREDICTION

    HERNANDEZ ANDRES MUNOZ / MORALES MANUEL POLAINA / JIMÉNEZ ALEJANDRO GÜEMES | European Patent Office | 2023

    Free access

    REAL-TIME AIRCRAFT FLIGHT DELAY PREDICTION

    ANDRES MUNOZ HERNANDEZ / MANUEL POLAINA MORALES / ALEJANDRO GUEEMES JIMENEZ | European Patent Office | 2023

    Free access

    Real-time aircraft flight delay prediction

    MUNOZ HERNANDEZ ANDRES / POLENA MORALES MANUEL / ALEJANDRO GOMEZ JIMENEZ | European Patent Office | 2023

    Free access