The general theory of side-looking synthetic aperture radar systems is developed. A simple circuit-theory model is developed; the geometry of the system determines the nature of the prefilter and the receiver (or processor) is the postfilter. The complex distributed reflectivity density appears as the input, and receiver noise is first considered as the interference which limits performance. Analysis and optimization are carried out for three performance criteria (resolution, signal-to-noise ratio, and least squares estimation of the target field). The optimum synthetic aperture length is derived in terms of the noise level and average transmitted power. Range-Doppler ambiguity limitations and optical processing are discussed briefly. The synthetic aperture concept for rotating target fields is described. It is observed that, for a physical aperture, a side-looking radar, and a rotating target field, the azimuth resolution is λ/α where α is the change in aspect angle over which the target field is viewed, The effects of phase errors on azimuth resolution are derived in terms of the power density spectrum of the derivative of the phase errors and the performance in the absence of phase errors.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Synthetic Aperture Radar


    Contributors:


    Publication date :

    1967-03-01


    Size :

    2580599 byte




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English



    Synthetic Aperture Radar

    Doerry, A. W. / Dickey, F. M. | British Library Online Contents | 2004


    Synthetic aperture radar

    Tema Archive | 1976


    Interferometric Synthetic Aperture Radar

    Smith, James A. | NTRS | 2004


    Bistatic Synthetic-Aperture Radar

    Elachi, C. / Goldstein, R. / Held, D. | NTRS | 1985


    Synthetic Aperture Weather Radar

    Ghaemi, Hirad | German Aerospace Center (DLR) | 2008

    Free access