Discriminant analysis is a technique used in statistics and machine learning to separate two or more classes of objects or events. We introduce linear, quadratic, and mixture discriminant analysis methods into radar signal classification. However, the selection of an appropriate discriminant analysis method can be difficult and no comparison study of these discriminant analyses for radar signal classification can be found in the open literature. This article presents a theoretical analysis and practical comparison of these three discriminant analysis methods for radar signal classification. The theoretical analysis is derived from Bayes’ theorem. The practical comparison study is performed on a dataset consisting of five radars emissions. The advantages and drawbacks of each discriminant analysis method are highlighted. This study demonstrates that quadratic discriminant analysis (QDA) is predominantly a better method for radar signal classification using our radar dataset. On average, it demonstrates 95%, 93%, and 86.6% classification accuracy for three, four, and five radar emitters in our radar dataset, respectively. Linear discriminant analysis (LDA) achieves on average 88.7%, 84.9%, and 79.2% classification accuracy for three, four, and five radar emitters, respectively. Mixture discriminant analysis (MDA) also achieves the same classification performance as QDA. Theoretical analysis shows that both LDA and QDA are a special case of MDA and that MDA can set up more decision boundaries than LDA and QDA if the feature distribution in the dataset is an ensemble of Gaussian distributions. Therefore, MDA is recommended for radar signal classification.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Discriminant Analysis for Radar Signal Classification


    Contributors:


    Publication date :

    2020-08-01


    Size :

    3266057 byte




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English



    Discriminant basis for object classification

    Guillamet, D. / Vitria, J. | IEEE | 2001


    Discriminant Basis for Object Classification

    Guillamet, D. / Vitria, J. / IEEE | British Library Conference Proceedings | 2001




    Probabilistic Linear Discriminant Analysis

    Ioffe, S. | British Library Conference Proceedings | 2006