We propose a unified approach for summarization based on the analysis of video structures and video highlights. Our approach emphasizes both the content balance and perceptual quality of a summary. Normalized cut algorithm is employed to globally and optimally partition a video into clusters. A motion attention model based on human perception is employed to compute the perceptual quality of shots and clusters. The clusters, together with the computed attention values, form a temporal graph similar to Markov chain that inherently describes the evolution and perceptual importance of video clusters. In our application, the flow of a temporal graph is utilized to group similar clusters into scenes, while the attention values are used as guidelines to select appropriate subshots in scenes for summarization.
Automatic video summarization by graph modeling
2003-01-01
301075 byte
Conference paper
Electronic Resource
English
Automatic Video Summarization by Graph Modeling
British Library Conference Proceedings | 2003
|VIDEO SUMMARIZATION DEVICE AND VIDEO SUMMARIZATION METHOD
European Patent Office | 2024
|VIDEO SUMMARIZATION DEVICE AND VIDEO SUMMARIZATION METHOD
European Patent Office | 2024
|Gesture-based video summarization
IEEE | 2005
|