A method for aircraft maintenance scheduling includes using a scheduling environment as a reinforcement learning (RL) environment to simulate an operational concept, train an RL agent, and generate aircraft maintenance decisions and explanations; providing a decomposed reward Deep Q-Network (drDQN) algorithm, wherein the drDQN algorithm includes a first Deep Q-Network (DQN) and a second DQN; using the first DQN to maximize a mission accomplishment objective; using the second DQN to minimize a maintenance cost objective; providing a trained drDQN agent; using the trained drDQN agent to obtain the aircraft maintenance decisions and corresponding mission accomplishment and maintenance cost rewards; using a scheduling module to arrange aircraft maintenance activities; and using an explainable module to get reasons to detail why the decisions are made and present tradeoffs between the decisions and non-selected alternatives.


    Access

    Download


    Export, share and cite



    Title :

    MAINTENANCE SCHEDULING USING EXPLAINABLE REINFORCEMENT LEARNING


    Contributors:
    DANG HUONG N (author) / CHANG KUO-CHU (author) / KHAN SIMON (author) / FRANCO MILVIO (author) / BLASCH ERIK (author) / CHEN GENSHE (author) / CHEN HUA-MEI (author)

    Publication date :

    2025-07-31


    Type of media :

    Patent


    Type of material :

    Electronic Resource


    Language :

    English


    Classification :

    IPC:    G06N COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS , Rechnersysteme, basierend auf spezifischen Rechenmodellen / G06Q Datenverarbeitungssysteme oder -verfahren, besonders angepasst an verwaltungstechnische, geschäftliche, finanzielle oder betriebswirtschaftliche Zwecke, sowie an geschäftsbezogene Überwachungs- oder Voraussagezwecke , DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES / B64F GROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT , Boden- oder Flugzeugträgerdeckeinrichtungen besonders ausgebildet für die Verwendung in Verbindung mit Luftfahrzeugen




    Fighter Jet Navigation and Combat Using Deep Reinforcement Learning With Explainable AI

    Kar, Swati / Dey, Soumyabrata / Banavar, Mahesh K et al. | IEEE | 2025


    Reinforcement learning in scheduling

    Dietterich, Tom G. / Ok, Dokyeong / Zhang, Wei et al. | NTRS | 1994


    Reinforcement Learning in Scheduling

    United States; National Aeronautics and Space Administration / United States; Air Force | British Library Conference Proceedings | 1993