An advanced driver assistance system (ADAS) and method for a vehicle utilize a light detection and ranging (LIDAR) system configured to emit laser light pulses and capture reflected laser light pulses collectively forming three-dimensional (3D) LIDAR point cloud data and a controller configured to receive the 3D LIDAR point cloud data, convert the 3D LIDAR point cloud data to a two-dimensional (2D) birdview projection, obtain a template image for object detection, the template image being representative of a specific object, blur the 2D birdview projection and the template image to obtain a blurred 2D birdview projection and a blurred template image, and detect the specific object by matching a portion of the blurred 2D birdview projection to the blurred template image.


    Access

    Download


    Export, share and cite



    Title :

    TRACKING OBJECTS IN LIDAR POINT CLOUDS WITH ENHANCED TEMPLATE MATCHING


    Contributors:
    LI DALONG (author) / SMITH ALEX M (author) / HORTON STEPHEN (author)

    Publication date :

    2020-06-25


    Type of media :

    Patent


    Type of material :

    Electronic Resource


    Language :

    English


    Classification :

    IPC:    G01S RADIO DIRECTION-FINDING , Funkpeilung / B60W CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION , Gemeinsame Steuerung oder Regelung von Fahrzeug-Unteraggregaten verschiedenen Typs oder verschiedener Funktion



    Tracking objects in LIDAR point clouds with enhanced template matching

    LI DALONG / SMITH ALEX M / HORTON STEPHEN | European Patent Office | 2021

    Free access

    DNN-Based Recognition of Pole-Like Objects in LiDAR Point Clouds

    Plachetka, Christopher / Fricke, Jenny / Klingner, Marvin et al. | IEEE | 2021


    AUTOMATIC LABELING OF OBJECTS FROM LIDAR POINT CLOUDS VIA TRAJECTORY-LEVEL REFINEMENT

    YANG ANQI JOYCE / CASAS ROMERO SERGIO / DVORNIK MIKITA et al. | European Patent Office | 2024

    Free access

    Image-based classification of small flying objects detected in LiDAR point clouds

    Hammer, Marcus / Borgmann, Björn / Hebel, Marcus et al. | SPIE | 2020


    Improving Map Re-localization with Deep ‘Movable’ Objects Segmentation on 3D LiDAR Point Clouds

    Vaquero, Victor / Fischer, Kai / Moreno-Noguer, Francesc et al. | IEEE | 2019